EGU 2018 - Costs of Natural Hazards

Estimating flood damage potentials by linking paleoflood records and empirical loss data

F. Prettenthaler, H. Albrecher, M. Hofstätter, D. Kortschak, J. Köberl, A. Lexer, T. Swierczynski

09.04.2018, Vienna

Motivation

 Floods are the leading cause of economic damages from natural disasters in Austria

 Estimations on current and future damage potential are of high importance

BUT

 Uncertainty is high – amongst others due to short time series on damage experience

Data source: EM-DAT; 1990-2016

Objective & Methodology

Improve estimations on past, current and future flood damage potentials by making use of and merging different kinds of data sets (Focus: Northern Austria)

Cyclone tracks & precipitation totals 1959-2015 & 2015-2100 Mondsee region

Paleoflood records

~7000 years of Lake Mondsee sediments Refined estimates on flood damage potentials

Loss data

on buildings for up to 25 years at municipal resolution

Project study: Mondsee (Upper Austria)

Altitude: 481 m asl, Lake surface 13.8 km², Depth (max): 68 m, Catchment: 247 km²

7000-year flood series from Mondsee sediments

Laminated Mondsee sediments (varves):

- Spring/Summer calcite layer, diatoms (algaes)
- Autumn/Winter clastic debris
- Abundant event layers
 - → Flood layers
 - → debris flows layers

Event layer reconstruction:

Extreme precipitation in summer causes floods and debris flows that lead to detectable sediment input into the lake

Sediment records

Change Point(s)

indicated by a Change Point Analysis on inter-event occurrence times

Method 1: Flood risk modelling using loss data

NeRF: <u>Ne</u>ighborhood <u>Relationship</u> <u>Flood risk model</u>

^{*)} based on Prettenthaler, F., Kortschak, D., et al. (2015): *Catastrophe Management: Riverine Flooding*, in Steininger, K. et al. (ed.) Economic Evaluation of Climate Change Impacts: Development of a Cross-Sectoral Framework and Results for Austria, Springer.

Method 2: Flood risk modelling using sediment & loss data

Probabilistic procedure

to relate sediment records to loss data

- Probability of "high" discharge
 Griesler Ache (station St. Lorenz):
 yearly max. peak discharge > 80 m³/s
- Damage threshold for municipality Thalgau
 Use NeRF_{EVA} & NeRF_{HORA} to calculate Value at Risk, based on probability of "high" discharge (1)

Map data ©2017 GeoBasis-DE/BKG (©2009), Google

- Conditional probability distribution of damages ...
 ... for municipalities in the "Mondsee region", given that the damage in
 Thalgau is above or below the damage threshold of (2)
- Probability that "high" discharge coincides with flood record in sediment data

Preliminary results

Estimated damage of a 200-year event

for the "Mondsee region"

"Mondsee region": Region with similar discharge extremes as station "St. Lorenz"

Thalgau & St. Lorenz

SR ... Sediment Records, CP ... Change Point

Discussion of the proposed procedure

Advantages

of using sediment records

- Long time periods with information on variability of event frequency
- Relationship between current experience and former centuries

Limitations

of using sediment records

- No information on event size in sediment records
- Uncertainties in relationship between sediment records and loss data
- Reasons for regime changes in flood occurrence (sediment records) uncertain (climate change or other reasons?)

Thanks for your attention!

Franz Prettenthaler JOANNEUM RESEARCH - LIFE franz.prettenthaler@joanneum.at +43 316 876 7601

This study is part of the FloodRisk-7000 project (https://floodrisk.joanneum.at) funded by ACRP 2015, 8th Call

